ANNUAL REPORT

FISCAL YEAR 2011-2012

Left to right standing: Mr. J. Gregory Solarz, Vice-Chair Mr. Richard Vigue, Chair Ms. Melissa Cribbins, Member Charles J. Sharps, Ph.D., Secretary

BOARD OF DIRECTORS' MESSAGE

"To Provide a Reliable, Quality Service Meeting the Present and Future Needs of Our Community"

Thank you for taking the time to review the 2011-2012 Coos Bay-North Bend Water Board Annual Report. It contains information related to utility projects, finances and water quality, and it gives you an overview of the operations of the Coos Bay-North Bend Water Board and the services it provides. Additional information about your utility can be found on our website: www.cbnbh2o.com.

Given the length of anticipated service of utility infrastructure, important decisions today can have a significant impact on future water quality, quantity, as well as operations and maintenance costs. To be successful, we plan and schedule Water Board operations, weeks, months and years ahead of time.

As part of your Water Board's planning efforts, a *Distribution System Condition Assessment and Replacement Plan* was completed in 2012. This plan is highlighted in this year's Annual Report and will be a guide in Water Board planning in the decades to come.

As your Board Members, we are here to serve you. We encourage your comments and suggestions on the issues you believe are important in operating a successful utility. Please consider attending a Water Board meeting or touring the facilities. Give Water Board staff or one of us a call; we would be happy to hear from you.

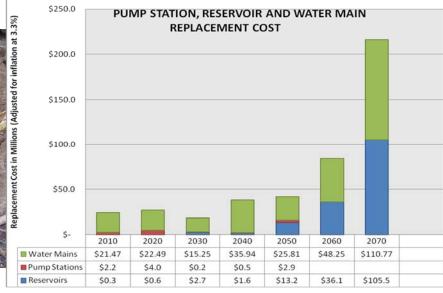
BOARD OF DIRECTORS

Richard Vigue, Chair	J. Gregory Solarz, Vice Chair	
Charles J. Sharps, Ph.D., Secretary	Melissa Cribbins, Member	

A Long Term Solution for a Long Term Project

"To Construct, Operate and Maintain the Water System Facilities, Utilizing Safe and Efficient Practices, for the Benefit Of Our Customers"

Many of our customers only think of the water utility in terms of the water which flows from their tap; but how did that water get to the home, school, business or industrial customer? It arrives through a distribution system of over 258 miles of water pipes, almost 13,000 services, passes through one or more of 30 pumping stations and 19 reservoirs. This infrastructure was installed or built over many decades. If it had to be replaced today it would cost nearly \$170 million.



Everest Reservoir

Recognizing the need to plan for rehabilitation or replacement of this infrastructure; in 2012, the Water Board completed a Distribution System Analysis, Condition Assessment and Replacement Plan. The plan outlined a multi-decade approach to replacements and strengthening of the system. Following this plan will minimize the financial impacts to our customers, while increasing system reliability, water quality and quantity.

Water Utility Infrastructure Inventory

Water Treatment Plants

Pony Creek Filtration Plant—8 MGD North Spit Treatment Plant—1 MGD

Surface Water Storage

- Upper Pony Creek Dam and Reservoir 6,230 AC-FT
- Merritt Lake Dam and Reservoir 385 AC-FT
- Joe Ney Dike, Reservoir and Pump Station 275 AC-FT

Dunes Aquifer System

18 Wells12 Miles of Pipe25 Test Wells (Piezometers)2 Booster Pumps3 Monitoring Wells

Distribution System

12,740 Water Services 258 Miles of Pipe 1,217 Hydrants 5,380 Control and Hydrant Valves

*MGD = Million Gallons per Day AC-FT= Acre Feet (325,830 gallons)

Pump Station Name	Associated Storage Facility		
6th and I Street	10th & I Street Reservoir		
10th and E Street	14th & F Street Reservoir		
10th and Ingersol	Ingersol Reservoir		
13th Court	Isthmus Heights Reservoir		
14th and Nutwood Avenue	High Level Reservoir		
Brights Mill	Brights Mill Reservoir		
California Street	Libby Reservoir		
Crestview	High Level Reservoir		
Everest Avenue	Everest Reservoir		
Flanagan Street	Bay Park Reservoir		
Glasgow	Glasgow Reservoir		
Glasgow Heights	Glasgow Reservoir		
Hauser	Hauser Reservoir		
High Level	High Level Reservoir		
Market Street	Clearwell		
Millington	Millington Reservoir		
Minnesota Street	Clearwell		
Newmark and Ash	Radar Reservoir		
Newmark and Tremont	Union Avenue Reservoir		
Oregon Street	Libby Reservoir		
Pennsylvania Avenue	Libby Reservoir		
Pigeon Point	Charleston Reservoir		
Seven Devils	Charleston Reservoir		
Shinglehouse Slough Road	Brights Mill Reservoir		
Shorewood	Shorewood Reservoir		
Sierra Avenue	Everest Reservoir		
Telegraph Hill	High Level Reservoir		
Terramar	Terramar Reservoir		
Union Avenue High Level	High Level Reservoir		
Wisconsin Avenue	Charleston Reservoir		
Woodlawn High Level	High Level Reservoir		

Projects and Equipment Included in Fiscal Year 2011-12 Budget

No.	Project Listing	Estimated Cost
1	Install 8" PVC on Koosbay Boulevard from Nutwood to 10 th , 1,100', Retire 1,100' 6" Cl	\$ 102,000
2	6" Cl	209,000
3	Charleston Boat Basin Drive, install remainder of original 3,100' 12" PVC from	200,000
	Cape Arago State Highway to OIMB, Retire 3,100' 6" AC	119,000
4	Ingersoll Reservoir Easement and Security Fence, 400'	29,500
5	Everest Reservoir Fence, 300'	15,300
6	Hauser Reservoir Roof	70,500
7	Upgrade Terramar Pump Station Piping and Pump	33,500
8	California Street Water System Planning and Consultant Design	45,000
9	New Electrical Panels, Meters and Controls for Wells 45 and 46	15,500
10	New Lime System at Pony Creek Treatment Plant	61,200
11	Тегтаmar Pump Station and Reservoir Telemetry	19,000
12	Meter Replacements	45,000
13	Distribution System Asbuilting and Mapping	35,000
14	Service Meter Relocations	22,500
15	Replace Office Phone System	30,000
	Total Project Costs	\$852,000
No.	Equipment Listing	Estimated Cost
1	Crew Truck 4WD (No. 47)	\$ 46,000
2	Dunes Pickup 4WD (No. 4).	24,000
3	Backhoe	90,000
4	New Server	10,000
5	Finance Equipment	7,500
6	Finance Software-Springbrook	29,500
	Total Equipment Costs	<u>\$207,000</u>
	Total Estimated Capital Expenditures	\$ 1,059,000

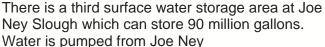
Frequently Asked Questions and Utility Statistics Fiscal Year 2011-2012

Q: How many customers does the Water Board serve?

A: As of June 30, 2012, our customer total is 12,740, which includes 9,881 customers inside the city limits of Coos Bay and North Bend and 2,859 customers outside the city limits. The total population served by the Water Board is approximately 34,500 within a service area of approximately 100 square miles.

Q: How much per month does the average residential customer spend for water?

A: The rates are different for customers inside the city limits than customers outside the city limits. The average monthly residential bill inside the city limits is \$24.69 and outside the city limits is \$34.17. The average residential customer uses 4,473 gallons of water monthly.


Q: What does it take to get the water from the treatment plant to the customer's tap?

A: More infrastructure than most people might imagine! When the water leaves the treatment plant, it goes into the distribution system which consists of 258 miles of various sizes of pipeline, approximately 5,380 control and hydrant valves within those pipelines, and approximately 1,217 fire hydrants. It takes 31 pump stations within the distribution system to get the water to customers at adequate pressure, plus 19 storage reservoirs located throughout the system.

Q: Where does the water come from that's treated by Pony Creek Water Treatment Plant?

A: There are two surface water reservoirs upstream of the treatment plant, Upper Pony Creek and Merritt Reservoirs. The larger, Upper Pony

Creek Reservoir, can hold 2 billion gallons of water; and Merritt Reservoir can hold 125 million gallons.

through a pipeline into the Upper Pony Creek Reservoir.

Q: How much water is produced in a year for customers?

A: The total amount of water produced for customers this fiscal year was 1,382 million gallons of treated water and 144 million gallons of untreated water. The average daily demand for treated water was 3.79 million gallons and 0.395 million gallons for untreated water. The demand peaked at 6.9 million gallons per day for treated and 0.588 million gallons per day for untreated water in fiscal year 2011-12.

Q: How many water treatment plants are there?

A: There are two. The main treatment plant, Pony Creek Water Treatment Plant, is located on Ocean Boulevard, Coos Bay and has a production

capacity of 8 million gallons per day (MGD). Improvements planned for 2011-2013 include additional treatment capacity to 12 MGD. The North Spit Water Treatment Plant, located on TransPacific Lane, North Bend, treats water from the dunes well system and has a capacity of 1 MGD. If an emergency arises, the North Spit Plant supplements the Pony Creek Plant to meet the needs of Water Board customers.

Q: How many wells are in the dunes?

A: There are 18 production wells in the dunes which can produce up to 4 million gallons per day of untreated water.

Coos Bay-North Bend Water Board Statement of Net Assets as of June 30, 2012

		4
Assets:		
Current Assets:		
Cash and Cash Equivalents	\$ 5,639,202	
Accounts Receivable - Water (Net)	387,378	
Accounts Receivable - Sewer	305,554	
Accounts Receivable - Other	20,685	
Inventory	418,124	
Prepaid Expenses	<u>37,710</u>	
Total Current Assets		\$ 6,808,653
Restricted Cash Assets		51,141
Utility Plant:		
Utility Plant (Net of Accumulated Depreciation)	\$47,851,778	
Construction in Progress	11,230,718	
Total Utility Plant		59,082,496
Deferred Charges and Other Assets:		
Clearing Accounts	\$ 28,818	
Other Work in Progress	65,919	
Total Deferred Charges and Other Assets		94,737
Total Assets:		\$66,037,027
Liabilities and Net Assets:		
Current Liabilities:		
Accounts Payable	\$ 877,584	
Accrued Salaries, Payroll Taxes and Insurance	68,866	
Accrued Interest on Long-term Debt	122,284	
Accrued Vacation	138,002	
Accrued Other Expenses	12,920	
Current Portion of Long-term Debt	491,241	
Sewer Service Collections Payable to Cities	524,539	
Sewer Service Receivables Payable to Cities	<u>305,554</u>	
Total Current Liabilities		\$ 2,540,990
Liabilities Payable from Restricted Assets		51,141
Long-Term Liabilities:		
Bonds Payable (Net of Current Portion)	\$ <u>15,528,223</u>	
Total Long-Term Liabilities	<u> 10,020,220</u>	<u>15,528,223</u>
Total Liabilities:		18,120,354
Net Assets:		
Investment in Capital Assets, Net of Related Debt	\$43,063,032	
Restricted Net Assets	-0-	
Unrestricted	<u>4,853,641</u>	
Total Net Assets		\$ <u>47,916,673</u>

2012 WATER QUALITY STATISTICS

One of the most important focuses of the Water Board is to provide high quality drinking water to our customers. Thousands of tests are performed annually as part of our quality control program and to insure compliance with state and federal regulations. The following results are reflective of 2012 reporting requirements.

Abbreviations and units used in trace concentration measurements issued by the Oregon Health Authority:

Waiver = non-vulnerability to contaminant

NTU = nephelometric turbidity unit ND = not detected mg/L - miligrams per liter CU - color units pCvL = picocunes per liter < = less than MCL = maximum contaminant level > = greater than MFL = million fibers per liter (EPA) AL = action level ug/L = micrograms per liter P/A = presence absence

- 3		•	
PARAMETER	UNIT	MCL	RESULTS
Turbidity	NTU	0.3	0 10
MICROBIOLOGICAL			
Coliform	P'A	5% positive	ND - 1 of 484
INIODOANIOO	<u> </u>	<u> </u>	samples
INORGANICS			T
Antimony	mg/L	0 006	(4D & 0 0002
Arsenic	mg/L	0 01	(4D \$6 0 001
Asbestos	MFL	7.0	NO -0 0 0 0
Barium	mg/L	2.0	ND & 0 05
Beryllium	mg/L	0.004	ND & 00001
Characters	mg/L	0.005 0.1	1000.0 3 OK
Chromium	mg/L		ND & 0.005
Cyanide	mg/L	0.2 2 – 4	ND & 0 003
Fluoride	mg/L		1 03
Lead	mg/L	0.015-AL	♦ 0 0041
Mercury	mg/L	0 002	ND & 0 0002
Nickel	mg/L	01	ND 28 0 0005
Total Nitrate (as N)	mg/L	100	0 27
Nitrate + Nitrite (as f-l)	mg/L	100	0 37
Nitrite (as N)	mg/L	1.0	ND @ 065
Selenium	mg/L	0.05	0 0005820
Sodium (advisory)	mg/L	20	7.69
Thallium	mg/L	0.002	ND & .0005
SYNTHETIC ORGANIC CHE			L 110 -0 0 0000
2.4-0	mg/L	0.07	ND & 0 0002
2,4,5-TP (Silvex)	mg/L	0.05	ND & 0 0004
Adipates	mg/L	0.4	ND 63 0001
Alachior	mg/L	0 002	ND & 0 0004
Atrazine	mg/L	0 003	ND & 0 0002
Benzoapyrene	rng/L	0 0002	ND & 0 00004
BHC-gamma (Lindane) Carbofuran	mg/L	0.04	HD 윤 0 00002
Chlordane	mg/L	0.002	
	mg/L	0.002	ND 28 0 0004
Dalapon Dibromochloropropane	mg/L	0.0002	ND 26 0 002 ND 26 0 000002
Dioromochioropropane Dinoseb	mg/L	0.0002	ND & 0.0002
Dioxin	mg/L	0.00000003	Waiver
Diquat	mg/L mg/L	0.00	ND & 0 0004
Endothali	mg/L	0.02	ND 65 0 01
Endrin	mg/L	0.002	ND & 0 00002
Ethylene Oibromide	mg/L	0 00005	ND & 0 00001
Glyphosate	mg/L	0.7	HD 86 0 000
Heptachlor Epoxide	mg/L	0 0002	HD & 0 00002
Heptachior	mg/L	0 0004	HD & 0 00004
Hexachlorobenzene	mg/L	0.001	10000 0 g OH
Hexachlorocyclopentaciene	mort	0.05	ND 28 0 0002
: : : : : : : : : : : : : : : : : : :		. 4.44	

Hexachlorocyclopentaciene | mg/L | 0.05 | ND 28 0 0002 Blanks under MCL represent unregulated volatile organic chemicals Trihalomethanes include: Bromodichloromethane, Bromoform, ◆90th percentile for Lead and Copper Chloroform, Dibromochloromethane

PARAMETERS	UNIT	MCL	RESULTS
SYNTHETIC ORGANIC CHEM			[110 00 0 00000
Methoxychlor Pentachlorophenol	mg/L mg/L	0 04 0 001	ND @ 0 00002 ND @ 0 00009
Phthalates	mg/L	0.006	ND @ 0.0003
Picloram	mg/L	0.5	ND @ 0.0002
Polychlorinated Biphenyls	mg/L	0.0005	ND @ 0.0002
Simazine	mg/L	0.004	ND @ 0.0001
Toxaphene	mg/L	0.003	ND @ 0.001
Vydate (Oxamyl)	mg/L	0.2	ND @ 0.002
VOLATILE ORGANIC CHEMI			
Trihalomethanes **	mg/L	0 08	0 022
Halo Acetic Acids ***	mg/L	0 06	0 018
1 1 1 2-Tetrachloroethane * 1 1 1-Trichloroethane	rmg/L	02	ND @ 0 0005
1 1 2 2 - Tetrachloroethane *	mg/L mg/L	U Z	ND @ 0 0005 ND @ 0 0005
1.1.2-Trichlomethane	mg/L	0.005	ND @ 0.0005
1.1-Dichloroethane *	mg/L		ND @ 0.0005
1.1-Dichloroethylene	mg/L	0.007	ND @ 0.0005
1.1-Dichloropropene *	mg/L		ND @ 0.0005
1,23-Trichloropropane *	mg/L		ND @ 0.0005
1.2.4-Trichlorobenzene	mg/L	0.07	ND @ 0.0005
1,2-Dichloroethane	mg/L	0 005	ND @ 0.0005
1,2-Dichloropropane	mg/L	0 005	ND @ 0 0005
1,3-Orchloropropane * 1 3-Orchloropropene *	mg/L		ND @ 0 0005
2 2-Orchloropropane 1	mg/L		ND @ 0 0005 ND @ 0 0005
Senzene	mg/L	0 005	ND @ 0 0005
Bromoben zene 1	mg/L	0 0 0 0	ND @ 0.0005
Bromodichloro-methane	mg/L		0 0070
Bromoform	mg/L		ND @ 0.0005
Bromomethane *	mg/L		ND @ 0.0005
Carbon Tetrachloride	mg/L	0.005	ND @ 0.0005
Chloroethane *	mg/L		ND @ 0.0005
Chloroform	mg/L		0 0090
Chloromethane * cis-1,2 Orchloroethylene	mg/L	0 07	ND @ 0 0005 ND @ 0 0005
Oibromochloro-methane	mg/L mg/L	007	0.0033
Dibromomethane	mg/L		ND @ 0 0005
Orchloromethane	mg/L	0 005	ND @ 0 0005
Ethylbenzene	mg/L	07	ND @ 0 0005
m-Oichlorobenzene *	mg/L		ND @ 0.0005
Methyl tert-butyl ether "	mg/L		ND @ 0.0005
Monochlorobenzene	mg/L	0.1	ND @ 0.0005
o-Chlorotoluene *	mg/L		ND @ 0.0005
o-Dichlorobenzene	mg/L	0.8	ND @ 0.0005
p-Chlorotoluene * p-Oichlorobenzene	mg/L	0 075	ND @ 0.0005 ND @ 0.0005
Styrene	mg/L mg/L	01	ND @ 0 0005
Tetrachloroethylene	mg/L	0 005	ND @ 0 0005
Toluene	mg/L	10	ND @ 0 0005
trans-1 2-Orchloroethylene	mg/L	01	ND @ 0 0005
Trichloroethylene	mg/L	0 005	ND @ 0 0005
Vinyl Chlonde	mg/L	0 002	ND @ 0.0005
Xylenes (total)	mg/L	10.0	ND @ 0.0005
RADIONUCLIDES-NATURAL		Lac	Lup
Gross Alpha Combined Radium 226*228	pCi/L	15	ND 0.5
Combined Uranum 226:228	pCi/L ug/L	5 30	ND @ 1.0
SECONDARY CONTAMINAN	T	. ~	110 (0) 1.0
Color	iau	15	4
ρH		65-85	82
Hardness	mg/L	250 0	19
Соррег	mg/L	1 3-AL	♦0042
Iron	mg/L	03	0 03
Manganese	mg/L	0 05	0 020

Halo Acetic Acids include: Dibromoacetic acid, Dichloroacetic acid, Monobromoacetic acid, Monochloroacetic acid, Trichloroacetic acid

Utility Mission Statement:

"To provide a Reliable, Quality Service Meeting the Present and Future Needs of our Community"

VISIT OUR WEBSITE AT www.cbnbh2o.com OR CONTACT US BY E-MAIL

rob_schab@cbnbh2o.com
General Manager
Administration, Policies, and Water Resources
Management

ron_hoffine@cbnbh2o.com
Operations Director
Engineering and System Development

bryan_tichota@cbnbh2o.com

Customer Relations Supervisor

Customer Service

robert_buras@cbnbh2o.com **Water Treatment Supervisor** Water Quality and Production

matt_whitty@cbnbh2o.com Engineering Supervisor Utility Capital Planning

rick_abbott@cbnbh2o.com
Distribution Supervisor
Water Distribution

jeff_howes@cbnbh2o.com
Finance Director
Utility Financial Management and Accounting

karen_parker@cbnbh2o.com
Administrative Assistant
Personnel